
Can we start with “microscopic” knowledge and learn something 

about bulk properties of matter such as temperature?

Statistical Thermodynamics

Will the peculiar rules governing the behavior of an individual particle or small group of particles 

(such as the Pauli principle) influence the properties of the matter they compose? 

• Particles have identical physical properties…but can be distinguished by 

following their (well defined) classical paths?

• In equilibrium, the energy distribution of the particles will converge to the most probable allowed.

 In principle, there is no  limit on the number of particles occupying each state.
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If you are making choices from n objects, then on your first pick you have n choices. 

On your second pick, you have (n-1) choices, (n-2) for your third choice and so forth. 

As illustrated for 5 objects, the number of ways to pick from 5 objects is 5!

Counting the number of "permutations"

• • • • • • • • • • • • • • •

5 choices 4 choices          3 choices         2 choices 1 choice

n n-1                   n-2                    n-3                    n-4

Number of permutations of 5 objects is 5!
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Distinguishable particles

Identical particles
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Distinguishable particles Indistinguishable /Identical 

particles

Number of particles = 5

Energy states = 2

Total arrangements 

i.e.  
5!

3!2!
= 10
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Interchange of particle doesn’t 

produces a new state
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6!

5! 1!
= 6

6!

3! 2! 1!
= 60

6!

2! 2! 1! 1!
= 180

6!

2! 1! 1! 1! 1!
= 360

6!

1! 1! 1! 1! 1! 1!
= 720

Counting the distinguishable states

N= Total number of particles and 

𝑛𝑖 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 𝑖𝑛 𝑙𝑒𝑣𝑒𝑙 𝑖
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑖𝑐𝑟𝑜𝑠𝑡𝑎𝑡𝑒𝑠 =

𝑁!

𝑛1!𝑛2!𝑛3!……𝑛𝑖!

• If each of these “microstates” is equally likely (and we assumed that we will converge on 

the most probable), which means that nature doesn’t favor the situation where one 

particle has all of the energy.

• We assume that each “microstate” (unique permutation) is equally probable. 
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Classical Statistics:
• Particles are distinguishable 

Quantum Statistics
• Particles are indistinguishable 

Maxwell-Boltzmann Statistics:
• Any number of particle in any state

• We get 4 states of the above system as whole. 

Half of the states have particles in the same 

states and half of them in separate states.

• Particles with distinguishable states are known 

as ‘Maxwellons/Boltzons’.

• If ith state has degeneracy gi, then there will be 

an additional 𝑔𝑖
𝑛𝑖 ways of distributing these N

particles.

• Boltzmann statistics

• M-B statistics

1. Bose-Einstein Statistics
• Any number of particle can be in one state

• We get 3 states of the above system as whole. 

2/3 the states have particles in the same 

states and 1/3 of them in separate states.

• Particles with integer spin 0, 1, 2 etc. shows 

such statistics and known as ‘Bosons’

• Do not obey the Pauli principle

2. Fermi-Dirac Statistics

• No more than one particle can be in one state.

• We get ‘one’ state of the system as whole with 

particles in separate states and known as 

‘Fermions’ 

• ‘Fermions’ : Particles with half-spins obey the 

Pauli principle
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Bosons → wave-functions - Symmetric

Fermions → wave-function - Antisymmetric
© 2018 Dr. A. P. Sunda (www.apsunda.com)



• • •

• •

•

E3

E2

E1

• • •

• •

•

3 1 1

MB

MB

MB

3 .2 .1
W 5!

3! 1! 1!

27 2 1
W 120

3 2 1 1 1

W 1080

 
=  

 

  
=  

    

=

2 2 1

MB

MB

MB

3 .2 .1
W 5!

2! 2! 1!

9 4 1
W 120

2 1 2 1 1

W 1080

 
=  

 

  
=  

    

=

• •

• •

•

2 2 1

MB

MB

MB

2 .2 .1
W 5!

2! 2! 1!

4 4 1
W 120

2 1 2 1 1

W 480

 
=  

 

  
=  

    
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3 1 1

MB

MB
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2 .2 .1
W 5!

3! 1! 1!

8 2 1
W 120

3 2 1 1 1

W 320

 
=  
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  
=  

    

=
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1 2 2

MB

MB

3 .2 .1
W 5!

1! 2! 2!

W 360
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=  

 

=

1 2 2

MB

MB

2 .2 .1
W 5!

1! 2! 2!

W 240

 
=  

 

=

Maxwell-Boltzmann Statistics:

The probability distribution must be ‘maximum’ for an equilibrium state, 

Probability distribution W and the entropy are expressed by the relation: 

S = lnk W

ln= maxS k W
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For a closed system:

i ni nii

…
…

n2

…
…

2 n22

1 n1 n11

 i

i

n = N

 i i

i

n ε = E

Total number of particles are constant, i.e.

Total Energy E of the system is constant, i.e.

!


ini
i

i=1 i

g
W = N!

n

Probability distribution

Taking logarithm on both the side, we get

!

 
 
 


ini
i

i=1 i

g
ln W = ln N!

n

 i i i

i i

ln W = lnN!+ n  ln g - ln n !

( ) i i i i

i

i

i

ln W = N ln N -  + n ln g  N - -n n n ln

…by applying Stirling approximation

 i i i i

i i

ln W = N ln N + n ln g - n  ln n

…differentiating equation results in (N and gi are constant):

( ) ( ) ( ) ( )+ −   ii i i i i i i

i i i i

d ln W = n  ln g dn - n  d lnd ln g  n ln n  dn  

( ) ( ) ( )−  i i i i i i

i i i

d ln W = ln g dn - n  d ln n ln n  dn  

( ) 0= =  i
i i i

i i i

dn
n  d ln n n  

 n

( ) ( )− i i i i

i i

d ln W = ln g dn ln n  dn  

( ) i
i

i i

g
d ln W = ln dn

n

 i

i

dn = dN = 0

 i i

i

ε dn = dE = 0

( ) 0= i
i

i i

g
ln dn

n

At equilibrium…
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 i

i

dn = dN = 0

 i i

i

ε dn = dE = 0

( ) 0= i
i

i i

g
ln dn

n

In order to determine most probable state i.e. maximum probability, using 

Lagrangian undetermined multipliers…..

… multiply with   .........(1) i

i

dn = 0  

… multiply with   .........(2) i i

i

ε dn = 0  

Subtract equation (1) and (2) from the equation………..

We get…

( )− −  i
i i i i

i i ii

= 0  
g

ln dn dn ε dn
n

 

( ) = 0−
  
   −
   

 i
i i

i i

  
g

ln ε dn
n

 

0
  

=  
  

−



−i
i

i

g
ln ε

n
 

We choose  and  such that…

− =−i i iln g ε ln n  − −
= iε

i in g e
  Eq. is known as M-B distribution 

function of particles among cells 

in phase space at equilibrium.

1
+

=
i

i

ε

i

n

g e
 
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• Consider an array of ni particles and (gi -1) partitions needed to divide them into gi groups. The

number of ways of permuting ni particles among gi levels equals the number of ways of permuting

objects and partitions. i.e. (ni + gi - 1)!.

• Now the particles are indistinguishable, the number of ways of permuting them is_

N

BE

i 1

( 1)!
W

!( 1)!=

+ −
=

−
 i i

i i

n g

n g

Bose-Einstein Statistics

Taking logarithm on both the side, we get

1

( 1)!

!( 1)!=

 + −
 

− 


N
i i

i i i

n g
ln W = ln

n g

1

( 1)!

!( 1)!=

 + −
 

− 


N
i i

i i i

n g
ln W = ln

n g

( 1)! ( 1)!+ − −  i i i i

i i i

ln W = ln n g - ln n ! - ln g

( ) ( ) ( ) ( ) ( )+ + + − − −  i i i i i i i iii i

i

il n g - nn W = n g ln n g n  ln n g  ln - g g

…by applying Stirling approximation

( ) ( ) ( ) ( )1 1++ − −i i ii i in g  n g = a d g = gn

…differentiating w.r.t. ni … equation results in (N and gi are constant):

( )
+

 i i
i

i i

n g
d ln W = dn ln 

n

( ) 0
+

= i i
i

i i

n g
dn ln 

n

At equilibrium…for most 

probable distribution

( ) ( ) ( ) ( )
1 

+ − 
 

 i ii i i ii i ii

i ii

d -(n + g ) dn n  d ln n
(n

 ln W = dn ln (n + g ) dn ln n  
+ g )
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 i

i

dn = dN = 0

 i i

i

ε dn = dE = 0

In order to determine most probable state i.e. maximum probability, using 

Lagrangian undetermined multipliers…..

… multiply with   .........(1) i

i

dn = 0  

… multiply with   .........(2) i i

i

ε dn = 0  

Subtract equation (1) and (2) from the equation………..

We get…

( )
 +
 
 

− −  i i
i i i i

i i ii

= 0  
n g

ln dn dn ε dn
n

 

( ) = 0
  +
  
 

− −
  

 i i
i i

i i

n g
l  n ε dn

n
  

0−
  +

=  
   

−i i
i

i

n g
ln ε

n
 

Eq. is known as B-E distribution 

function of particles among cells 

in phase space at equilibrium.

1

1
+

=
−i

i

ε

i

n

g e
 

1
 

= + 
 

+ i
i

i

g
ε ln 

n
 

( )
1

+  
= + 
 

iε i

i

g

n
e

  ( )
1

+
− =iε i

i

e
g

n

 

( ) 0
+

= i i
i

i i

n g
dn ln 

n
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• Consider an array of ni particles to distribute them into gi states. The number of ways of permuting ni

particles among gi states is equals the number of ways of permuting objects i.e. gi!/(gi - ni )!.

• Now the particles are indistinguishable, the number of ways of permuting them is_

N

FD

i 1

!
W

!( )!=

=
−

 i

i i i

g

n g n

Fermi-Dirac Statistics

Taking logarithm on both the side, …by applying Stirling approximation & …differentiating w.r.t. ni … equation results in 

(N and gi are constant):

( )
 −
 
 

 i i
i

i i

g n
d ln W = dn ln 

n

At equilibrium…for most probable distribution
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( ) 0
 −

= 
 

 i i
i

i i

g n
dn ln 

n In order to determine most probable state i.e. maximum probability, using 

Lagrangian undetermined multipliers…..

( )
 −
 
 

− −  i i
i i i i

i i ii

= 0  
g n

ln dn dn ε dn
n

 

0−
  −

=  
   

−i i
i

i

g n
ln ε

n
 

( )
1

+  
= − 
 

iε i

i

g

n
e

 
1

 
= −

 
+ 

i
i

i

g
ε ln 

n
 

Eq. is known as F-D distribution 

function of particles among cells 

in phase space at equilibrium.

1

1
+

=
+i

i

ε

i

n

g e
 



We assume that each “microstate” (unique permutation) is equally probable and exists. 

To find the average number of particles in each state

1 21 2j j jn np pn= + +
Average number of 

particles in the jth

energy level count the number 

of particles in 

each state for this 

distribution

multiply by the number of 

permutations that can 

produce this distribution 

divided by the total number 

of permutation for all 

distributions

The distribution of energy

1

1
+

=
−i

i

ε

i

n

g e
 

1
+

=
i

i

ε

i

n

g e
 

1

1
+

=
+i

i

ε

i

n

g e
 

1

1

=

−
εi

T
i

k

n

Ae

= = =
εii i

kT
ε

i
i ε

g 1 1
n

e e Ae Ae
 

1

1
+

=
+i

i

ε

i

n

g e
 

Bose-Einstein Statistics

Fermi-Dirac Statistics

Maxwell-Boltzmann Statistics
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Ref: http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/disbex.html#c2

Georgia State University

There are 26 possible distributions of 9 units of energy among 6 particles, and if those particles are indistinguishable and 

described by Bose-Einstein statistics, all of the distributions have equal probability. To get a distribution function of the 

number of particles as a function of energy, the average population of each energy state must be taken. The average for 

each of the 9 states is shown below compared to the result obtained by Maxwell-Boltzmann statistics.

Maxwell-Boltzmann statistics Vs. Bose-Einstein statistics 

Low energy states are more probable with Bose-Einstein statistics than with the 

Maxwell-Boltzmann statistics. While that excess is not dramatic in this example 

for a small number of particles, it becomes very dramatic with large numbers and 

low temperatures. At very low temperatures, bosons can "condense" into the lowest 

energy state. The phenomenon called Bose-Einstein condensation.

Energy level Average number M-B Average number B-E

0 2.143 2.269

1 1.484 1.538

2 0.989 0.885

3 0.629 0.538

4 0.378 0.269

5 0.210 0.192

6 0.105 0.115

7 0.045 0.077

8 0.015 0.038

9 0.003 0.038

http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/disbex.html#c2


➢ Low energy states are less probable with Fermi-Dirac

statistics than with the Maxwell-Boltzmann statistics

➢ Difference is not seen very dramatic in this example for a

small number of particles (06), it becomes very dramatic

with large numbers and low temperatures. At absolute zero

all of the possible energy states up to a level called the

Fermi energy are occupied, and all the levels above the

Fermi energy are vacant.

Ref: http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/disbex.html#c2

Georgia State University

Maxwell-Boltzmann statistics Vs. Fermi-Dirac Statistics

Unlike the boson case, only five energy distributions are 

allowed!  All others have more than the permitted two 

particles in each state in violation of the exclusion principle.

http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/disbex.html#c2


https://readingfeynman.org/tag/bose-einstein-distribution/

Further reading and references:

Physics of Materials by Dr. Prathap Haridoss,Department of Metallurgical  & Materials Engineering, IIT 

Madras. For more details on NPTEL visit http://nptel.iitm.ac.in

https://www.youtube.com/watch?v=1aHFG7VLr-g

Ref: https://www.youtube.com/user/SeriousScience

Nobel Prize winning physicist Prof. Wolfgang Ketterle from MIT on the candidates for Bose-Einstein 

condensation

https://www.youtube.com/watch?v=FuB2GrEmFIE&t=23s

https://www.youtube.com/watch?v=D0aPQKqA7rE

http://nptel.iitm.ac.in/
https://www.youtube.com/watch?v=1aHFG7VLr-g
https://www.youtube.com/user/SeriousScience
https://www.youtube.com/watch?v=FuB2GrEmFIE&t=23s
https://www.youtube.com/watch?v=D0aPQKqA7rE



